NPS55-90-20

NAVAL POSTGRADUATE SCHOOL Monterey, California

LATENT FACTOR MODELS AND ANALYSES FOR OPERATOR RESPONSE TIMES

Donald P. Gaver
I. G. O'Muircheartaigh

September 1990
Approved for public release; distribution is unlimited.
Prepared for:
Naval Postgraduate School, ey, CA 93955
FedDocs
D 208.14/2
NPS-55-90-20

NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA

Rear Admiral R. W. West, Jr.
Harrison Shull
Superintendent

This report was prepared in conjunction with research funded under the Naval Postgraduate School Research Council Research Program.

This report was prepared by:

```
f:d
\mathrm{ isification of this page}
```

REPORT DOCUMENTATION PAGE

		Ib Restrictive MarkingsDistribution Availability of ReportApproved for public release; distribution is unlimited			
lecurity Classification UNCLASSIFIED					
fication/Downgrading Schedul					
lg Organization Report Number(s) NPS55-90-20		5 Monitoring Organizat	tion Repor	Number	
Performing Organization jtgraduate School	6b Office Symbol (If Applicable) OR	7a Name of Monitoring	Organizat		
$\begin{aligned} & \text { (city, state, and ZIP code) } \\ & \text { CA } 93943-5000 \end{aligned}$		7b Address (city, state, and ZIP code)			
Funding/Sponsoring Organization a Postgraduate School	8b Office Symbol (If Applicable)	9 Procurement Instrume O\&MN, Direct F	ent Identif unding	ation N	
(city, state, and ZIP code) Monterey, California zey, CA 93943		10 Source of Funding Numbers			
		Program Element Number	Project No	Task No	Work Unit Accession N_{0}

clude Security Classification) Latent Factor Models and Analyses for operator Response Times
11 Author(s) Gaver, D. P. and O'Muircheartaigh, I. G.

fo Report	13 b Time Covered From\quad To	14 Date of Report (year, month,day)	15 Page Count
al	1990, September		

Codes	
up	Subgroup

18 Subject Terms (continue on reverse if necessary and identify by block number) Latent factor models; extreme-value distribution; Weibull distribution; bootstrap; maximum likelihood estimation; operator response times
ct (continue on reverse if necessary and identify by block number
models are presented for the response times of different operators to different tasks where response is by one or more cues provided by the system. One model for the log-response times is a mixed or latent ,del with unequal case fixed effects and variances. The other model for the log-response times is a non-log-extreme-value model. Procedures for estimating the parameters by maximum likelihood are 1. The models are used to analyze response time data from simulator experiments involving nuclear ant operators performing certain safety-related tasks. The findings of the models are critiqued and ons to risk analysis are sketched.

LATENT FACTOR MODELS AND ANALYSES FOR OPERATOR RESPONSE TIMES

D. P. Gaver
Department of Operations Research
Naval Postgraduate School
Monterey, CA 93943
I. G. O'Muircheartaigh
University College
Galway, Ireland

0. INTRODUCTION, BACKGROUND, AND SUMMARY

There are many situations in which an operator (single individual, or group or crew) is confronted with a somewhat complex task that must be accomplished within prescribed time limits. The task actually often initially requires diagnostic steps followed by action. In some cases the diagnostic steps are stimulated by a cue event, leading to probing actions intended to reveal the correctness of a tentative diagnosis, followed by observation and interpretation of system response, in turn followed by viewpoint revision and further action. While it is intriguing to attempt to model response in such detailed terms, this paper does not embark on that enterprise. Rather, we provide and analyze models for the resulting overall response time of different operators to different tasks where response is initiated by one or more cues provided by the system. Two factoranalytic models are presented along with likelihood estimation procedures. The latter are then employed to analyze data sets from typical exercises conducted at simulators used for training nuclear power plant operators; their identities are kept anonymous. (The findings of the model are critiqued, and applications to risk analysis are sketched.)

It is believed that similar models will be useful for summarizing the behavior of operators or crews in other situations, both military and otherwise. For example, application to military tank driver performance is envisioned.

1. A MIXED OR LATENT FACTOR MODEL WITH THE UNEQUAL CASE FIXED EFFECTS AND VARIANCES (LOG N MODEL).

Consider this linear model of mixed type:

$$
\begin{array}{rl}
Y_{i k}=\mu+\nu_{k}+\omega_{i}+\epsilon_{i k} & i=1,2, \ldots I \\
& k=1,2, \ldots h . \tag{1}
\end{array}
$$

where $Y_{i k}=l_{11} T_{i k}$ with $T_{i k}$ being the time for crew i to respond to situation k; μ and ν_{k} are fixed constants (effects), and $\omega_{i} \sim \operatorname{IIDN}\left(0, \sigma_{\omega}^{2}\right), \epsilon_{i k} \sim \operatorname{IIDN}\left(0, \sigma_{k}^{2}\right)$, are, respectively, the latent random component that "individualizes" case (individual, crew, etc.) i, and the random variation displayed by any individual on situation (task, problem, etc.) k. It is assumed that each case occurs in conjunction with each situation (e.g. a person confronts a particular problem) just once in the data set to be modelled. In practical circumstances, some such individual interactions may be missing for reasons unrelated to individuals and situations, a problem that is deferred for the present; see Appendix A and B.

As implied, the model described may well be of interest when data pertaining to human performance are to be analyzed, but should also be of use elsewhere. The h tasks or items are allowed to have their own fixed response properties, described by (ν_{k}, σ_{k}^{2}); this pair will be referred to as a task signature. The usual mixed ANOVA model formulation assumes $\sigma_{k}^{2}=\sigma^{2}$, constant for all k (see Scheffé (1959)), as is reasonable when measurement error is represented.

Note that because of the assumption of possibly unequal σ_{k} 's a fixed- ω_{i} model cannot be usefully estimated by likelihood. Consequently the above randomeffect model has been introduced, and fitted to data. As will be apparent, it is possible to estimate the posterior density for ω_{\imath} using Bayes' formula in the style of empirical Bayes; the mean of the resulting Normal/Gaussian density $\hat{E}\left[\omega_{i} \mid\right.$ data, $\log \mathrm{N}$ model $]$, is available as an estimate of the ith crew effect if so desired.

That the above setup is a latent factor model has been remarked to us by Professor T. W. Anderson; see Anderson (1988) Chapter 14 for relevant
coverage in the Normal/Ciaussian case. Brillinger and Preisler (1983) survey various other latent factor data-analytical studies in non-Gaussian settings; this includes a detailed discussion of a latent factor Poisson model for counting data. Ibrillinger's paper is interesting in that it suggests examining goodness of model fit by "uniform residuals," a procedure considered in our study as well.

Fitting the LOG N model by likelihood requires iterative calculations; the setup is described in the next section. In case one wishes to "robustify" the formulation, perhaps by introducing more outlier-prone specifications such as the Student t or Tukey density for ω_{i} then more numerical effort, or approximation is required. Use of the Laplace approximation together with Gauss-Hermite integration may well turn out to be useful; see Gaver and O'Muircheartaigh (1987), and Gaver, Jacobs and O’Muircheartaigh (1990). In a later section a totally non-Normal/Gauss model for operator response times is introduced and fitted.

2. FITTING THE LOG-NORMAL MODEL BY MAXIMUM

LIKELIHOOD

In the model (1) the individualizing case effect, ω_{i} for case i is viewed as a latent or unobserved $r v$ whose effect on the $Y_{i k}$ observable is indirect. What is the probability distribution of $Y_{i k}, k=1,2, \ldots K$ in terms of the unknown parameters? Clearly it is multivariate normal since ω_{i} and $\boldsymbol{\epsilon}_{i k}$ occur as a sum; the density for case (crew) i is, by conditional independence, given ω_{2},

$$
\begin{align*}
f_{\underline{Y}_{i}}\left(\underline{y}_{i} ; \mu, \underline{\nu}, \boldsymbol{\omega}_{i}\right)= & \prod_{k=1}^{K} \frac{e^{-\frac{1}{2}\left(y_{i k}-\mu-\nu_{k}-\omega_{i}\right)^{2} / \sigma_{k}^{2}}}{\sqrt{2 \pi} \sigma_{k}} \\
= & \frac{e^{-\frac{1}{2} \sum_{k=1}^{K}\left(y_{i k}-\mu-\nu_{k}-\omega_{i}\right)^{2} / \sigma_{k}^{2}}}{(\sqrt{2 \pi})^{K} \prod_{k=1}^{K} \sigma_{k}} \tag{2}
\end{align*}
$$

To obtain the unconditional density of \underline{y}_{i} remove the condition on ω_{i} :

$$
\begin{equation*}
f_{\underline{Y}}\left(\underline{y}_{i} ; \mu, \underline{\nu}\right)=\int_{-\infty}^{\infty} f_{\underline{Y}}\left(\underline{y}_{i} ; \mu, \underline{\nu}, \omega\right) e^{-\frac{1}{2} \omega^{2} / \sigma_{\omega}^{2}} \frac{d \omega}{\sqrt{2 \pi} \sigma_{\omega}} \tag{3}
\end{equation*}
$$

The calculation needed ("completion of the square" in the exponent) can be expeditiously performed as follows. Recognize that the exponent is quadratic in ω; put

$$
\begin{equation*}
-\frac{1}{2}\left(\frac{\bar{\omega}_{i}-\omega}{\tau}\right)^{2}-\frac{1}{2} K_{i}=-\frac{1}{2} \sum_{k=1}^{K}\left(y_{i k}-\mu-\nu_{k}-\omega\right)^{2} / \sigma_{k}^{2}, \tag{4}
\end{equation*}
$$

K_{i} being independent of ω. To find $\bar{\omega}_{i}, \tau^{2}$, and K_{i} differentiate (2.3) re ω and equate coefficients of ω and 1 :

$$
\begin{equation*}
\frac{\left(\bar{\omega}_{i}-\omega\right)}{\tau^{2}}=\sum_{k=1}^{K}\left(y_{i k}-\mu-\nu_{k}-\omega\right) / \sigma_{k}^{2}, \tag{5}
\end{equation*}
$$

so, from the ω-term,

$$
\begin{equation*}
1 / \tau^{2}=\sum_{k=1}^{K} 1 / \sigma_{k}^{2} \tag{6}
\end{equation*}
$$

while from the 1 term

$$
\begin{equation*}
\bar{\omega}_{i} / \tau^{2}=\sum_{k=1}^{K}\left(y_{i k}-\mu-\nu_{k}\right) / \sigma_{k}^{2} \tag{7}
\end{equation*}
$$

giving

$$
\begin{equation*}
\bar{\omega}_{i}=\sum_{k=1}^{K}\left(y_{i k}-\mu-\nu_{k}\right) W_{k} \equiv y_{i} .-(\mu+\nu .) \tag{8}
\end{equation*}
$$

where $W_{k}=\left(1 / \sigma_{k}^{2}\right) \tau^{2}=\left(1 / \sigma_{k}^{2}\right) / \sum_{l=1}^{K} 1 / \sigma_{l}^{2} ; y_{i}$. and ν. are thus W_{k}-weighted averages. Substitution into (4) gives

$$
\begin{align*}
K_{i} & =\sum_{k=1}^{K}\left(y_{i k}-\mu-\nu_{k}-\bar{\omega}_{i}\right)^{2} / \sigma_{k}^{2} \\
& =\sum_{k=1}^{K}\left[y_{i k}-\mu-\nu_{k}-\sum_{k=1}^{K}\left(y_{i k}-\mu-\nu_{k}\right) W_{k}\right]^{2} 1 / \sigma_{k}^{2} \tag{9}\\
& =\sum_{k=1}^{K}\left[\left(y_{i k}-y_{i .}\right)-\left(\nu_{k}-\nu_{.}\right)\right]^{2} 1 / \sigma_{k}^{2} .
\end{align*}
$$

Now from (2)

$$
\begin{equation*}
f_{\underline{Y}_{t}}\left(\underline{y}_{i} ; \mu, \underline{\nu}, \underline{\sigma}^{2}, \sigma_{\omega}^{2}\right)=e^{-\frac{1}{2} K_{1}} \int_{\infty}^{\infty} \frac{e^{-\frac{1}{2}\left(\bar{\omega}_{1}-\omega\right)^{2} / \tau^{2}} e^{-\frac{1}{2} \omega^{2} / \sigma_{\omega}^{2}}}{(\sqrt{2 \pi})^{K}\left(\prod_{k=1}^{K} \sigma_{k}\right) \sqrt{2 \pi} \sigma_{\omega}} d \omega, \tag{10}
\end{equation*}
$$

a familiar convolution, from which

$$
\begin{equation*}
f_{\underline{Y}_{i}}\left(\underline{y}_{i} ; \mu, \underline{\nu}, \underline{\sigma}^{2}, \sigma_{\omega}^{2}\right)=\frac{e^{-\frac{1}{2} K_{i}} e^{-\frac{1}{2}\left(\overline{(}_{i}\right)^{2} /\left(\tau^{2}+\sigma_{\omega}^{2}\right)}}{(\sqrt{2 \pi})^{K}\left(\prod_{k=1}^{K} \sigma_{k}\right) \sqrt{2 \pi} \sqrt{\tau^{2}+\sigma_{\omega}^{2}}} \tau . \tag{11}
\end{equation*}
$$

Thus the likelihood of $\mu, \underline{\nu}, \underline{\sigma}^{2}, \sigma_{\omega}^{2}$ is proportional to

$$
\begin{equation*}
L\left(\mu, \underline{\nu}, \underline{\sigma}^{2}, \sigma_{\omega}^{2} ; \underline{y}\right)=\prod_{\imath=1}^{l} \frac{e^{-\frac{1}{2} K_{i}} e^{-\frac{1}{2}\left(\bar{\omega}_{1}\right)^{2} /\left(\tau^{2}+\sigma_{\omega}^{2}\right)}}{\left(\prod_{k=1}^{K} \sigma_{k}\right) \sqrt{\tau^{2}+\sigma_{\omega}^{2}}} \tau \tag{12}
\end{equation*}
$$

and hence the log-likelihood, l, may be expressed as

$$
\begin{align*}
& 2 l\left(\mu, \underline{\nu}, \underline{\sigma}^{2}, \sigma_{\omega}^{2} ; \underline{y}\right)=I \ln \tau^{2}- \\
& \quad I \sum_{k=1}^{K} \ln \sigma_{k}^{2}-I \ln \left(\tau^{2}+\sigma_{\omega}^{2}\right)-\sum_{i=1}^{I} K_{i}-\sum_{i=1}^{I}\left(\bar{\omega}_{i}\right)^{2} /\left(\tau^{2}+\sigma_{\omega}^{2}\right) \tag{13}
\end{align*}
$$

Differentiation gives these estimates:

$$
\begin{equation*}
\frac{\partial l}{\partial\left(\nu_{k}-\nu_{\cdot}\right)}=0=\sum_{i=1}^{l}\left[\left(y_{i k}-\bar{y}_{i} \cdot\right)-\left(\nu_{k}-\nu_{\cdot}\right)\right]\left(1 / \sigma_{k}^{2}\right), \tag{14}
\end{equation*}
$$

so

$$
\begin{align*}
\nu_{k} \dot{-} \nu . & =\frac{1}{I} \sum_{i=1}^{I} y_{i k}-\frac{1}{I} \sum_{i=1}^{I} \sum_{k=1}^{K} y_{i k} W_{k} \tag{15}\\
& \equiv\left(y_{\cdot k}-\bar{y} . .\right) .
\end{align*}
$$

Next,

$$
\begin{equation*}
\frac{\partial l}{\partial(\mu+\nu .)}=0=\frac{1}{\tau^{2}+\sigma_{\omega}^{2}} \sum_{i=1}^{I}\left(y_{i} .-\left(\mu+\nu_{.}\right)\right) \tag{16}
\end{equation*}
$$

so

$$
\begin{equation*}
\mu \hat{+} \nu .=\bar{y} . \tag{17}
\end{equation*}
$$

These of course closely resemble conventional ANOVA estimates.
When estimating variances it is convenient to reparameterize in terms of precision: $p_{k}=1 / \sigma_{k}^{2}, p=1 / \tau^{2}=\sum_{k=1}^{K} 1 / \sigma_{k}^{2}=\sum_{k=1}^{K} p_{k}$.

Then

$$
\begin{equation*}
\frac{\partial l}{\partial p_{k}}=0=-\frac{I}{p}+\frac{I}{p_{k}}-\frac{-(1 / p)^{2}}{1 / p+\sigma_{\omega}^{2}}-\Delta_{I}^{2}(k)-\frac{(-1)\left(-(1 / p)^{2}\right)}{\left(1 / p+\sigma_{\omega}^{2}\right)^{2}}(\bar{\omega})^{2} \tag{18}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta_{I}^{2}(k)=\sum_{i=1}^{I}\left[\left(y_{i k}-y_{i \cdot}\right)-(y \cdot k-\bar{y} . .)\right]^{2} \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
(\bar{\omega})^{2}=\sum_{i=1}^{I}\left(\bar{\omega}_{i}\right)^{2} . \tag{20}
\end{equation*}
$$

Next

$$
\begin{equation*}
\frac{\partial l}{\partial \sigma_{\omega}^{2}}=0=-I \frac{1}{\tau^{2}+\sigma_{\omega}^{2}}+\frac{(\bar{\omega})^{2}}{\left(\tau^{2}+\sigma_{\omega}^{2}\right)^{2}}, \tag{21}
\end{equation*}
$$

yiedds

$$
\begin{equation*}
\frac{1}{p}+\sigma_{\omega}^{2}=\frac{1}{I}(\bar{\omega})^{2}=\frac{1}{I} \sum_{i=1}^{I}\left(\bar{\omega}_{i}\right)^{2} \tag{22}
\end{equation*}
$$

introduction of (21) into (18) simplifies the latter to

$$
\begin{equation*}
\frac{1}{p_{k}}=\frac{1}{I} \Delta_{I}^{2}(k)+\frac{1}{p}, \quad k=1,2, \ldots, K \tag{23}
\end{equation*}
$$

The system (15), (16), (22) and (23) must be solved iteratively. Begin by simply fitting as if $\sigma_{k}^{2}=\sigma^{2}$ to estimate $\mu(1), \nu_{k}(1), \omega(1)$, and obtain

$$
\begin{equation*}
\hat{\sigma}_{k}^{2}(1)=\frac{1}{I-1} \sum_{i=1}^{I}\left(y_{i k}-\hat{\mu}(1)-\hat{\nu}_{k}(1)-\omega_{i}(1)\right)^{2} \tag{24}
\end{equation*}
$$

from which compute $\widehat{W}_{k}(2)=\left(1 / \hat{\sigma}_{\omega}^{2}(1)\right) /\left(\sum_{l=1}^{K} 1 / \hat{\sigma}_{l}^{2}\right)$. Next calculate $\nu_{k} \hat{-} \nu \cdot(2) \equiv$ $y \cdot k(2)-\bar{y} . .(2)$ using $\widehat{W}_{k}(2)$ in (15), and $\mu \hat{+} \nu(2) \equiv \bar{y} . .(2)$ from (16). It is now possible to evaluate $\Delta_{I}^{2}(k ; 2)$ from (19), and $(\bar{\omega})^{2}(2)$ from (20), and hence $\hat{p}_{k}(2)$ and $\hat{p}(2)$ from (23), after which $\sigma_{\omega}^{2}(2)$ from (22). Now recompute $\widehat{W}_{k}(3)=$ $\left(1 / \hat{\sigma}_{k}^{2}(2)\right) /\left(\sum_{l=1}^{K} 1 / \hat{\sigma}_{l}^{2}\right)=\hat{p}_{k}(2) / \hat{p}(2)$, and so repeat iteratively until convergence is achieved. A solution procedure based on Newton-Raphson iteration has also been obtained; agreement of the two procedures is generally good.

3. LOG-EXTREME-VALUE MODEL (THE LOG EV MODEL)

An alternative to the previous model that may be attractive is the following setup:
(a) $T_{i k}$ is distributed according to a two-parameter Weibull; then it follows mathematically that
(b) $Y_{i k}=\ln T_{i k}$ has the extreme-value distribution:
$1-\exp \left[-\theta_{i} \exp \left(\left(y_{i k}-\eta_{k}\right) / \xi_{k}\right)\right]$, with probability density function

$$
\begin{align*}
& f_{Y_{i k}}\left(y_{i k} ; \eta_{k}, \xi_{k} ; \theta_{i}\right)= \\
& \quad \exp \left[-\theta_{i} \exp \left(\left(y_{i k}-\eta_{k}\right) / \xi_{k}\right)\right] \theta_{i} \exp \left(\left(y_{i k}-\eta_{k}\right) / \xi_{k}\right) \frac{1}{\xi_{k}} \tag{25}
\end{align*}
$$

Note the occurrence of parameter θ_{i}, which is intended to represent crew effect, i.e. θ_{i} is a way of individualizing crews comparable to the action of ω_{i} in the previous model. Values of θ_{i} are viewed as randomly selected latent factors as were the ω_{i} values. The nature of the θ_{i} contribution differs from ω_{i} in this model: whereas in the LOG N model ω_{i} acted purely additively (on the \log scale) to affect the center (mean of logged response times) in a manner common to all tasks, in the LOG EV model it can be seen that logged times are represented as

$$
\begin{equation*}
Y_{i k}=\eta_{k}+\xi_{k}\left[\left(-\ln \theta_{i}\right)+\epsilon_{i k}\right], \tag{26}
\end{equation*}
$$

$\epsilon_{i k}$ having standardized extreme value $d f$. For the present model, (25) оr (26),

$$
\begin{gather*}
E\left[Y_{i k} \mid \theta_{i}\right]=\eta_{k}-0.5772 \xi_{k}-\xi_{k} \ln \theta_{i} \tag{27}\\
\operatorname{Var}\left[Y_{i k} \mid \theta_{i}\right]=\frac{\pi^{2}}{6} \xi_{k}^{2} \simeq 1.6449 \xi_{k}^{2} \tag{28}
\end{gather*}
$$

which permit initial parameter estimation by moments and facilitates comparison with the results of alternative models. Expression (26) implies that responses to tasks are affected differentially: the greater the natural variation in performing a task by crews (measured by ξ_{k} for task k) the greater the "average" effect
on task duration due to crew effect. This is a specific form of interaction between crew and task effects that may (or may not) be reasonable in particular circumstances.

Conditional on θ_{2}, the crew i 's response, \underline{Y}_{1}, on K different tasks has joint density function

$$
\begin{equation*}
f_{\underline{Y_{i}}}\left(\underline{y}_{i} ; \underline{\eta}, \underline{\xi}, \theta_{2}\right)=\prod_{k=1}^{K} f_{Y_{i k}}\left(y_{i k} ; \eta_{k}, \xi_{k} ; \theta_{\mathbf{2}}\right), \tag{29}
\end{equation*}
$$

where conditional independence is assumed. In order to obtain the unconditional joint density of response \underline{Y}_{i} remove the condition on θ_{t} by integrating out; this step corresponds to (10). Thus

$$
\begin{equation*}
f_{\underline{Y}}\left(\underline{y}_{i} ; \underline{\eta}, \underline{\xi}\right)=E_{\theta_{i}}\left\{e^{-\theta_{i}} c_{i} \theta_{i}^{K}\right\} d_{i}, \tag{30}
\end{equation*}
$$

where

$$
\begin{equation*}
c_{i}=\sum_{k=1}^{K} \exp \left(\left(y_{i k}-\eta_{k}\right) / \xi_{k}\right) \tag{31}
\end{equation*}
$$

and

$$
\begin{equation*}
d_{t}=\exp \left(\sum_{k=1}^{K}\left(y_{i k}-\eta_{k}\right) / \xi_{k}\right) \prod_{k=1}^{K}\left(1 / \xi_{k}\right) \tag{32}
\end{equation*}
$$

The above model closely resembles one introduced by Crowder (1985) and Crowder and Kimber (1989). However, ours deals with the log time, and hence is a location-scale model that more closely compares to the additive log-normal model, although the η_{k} is not generally a mean, nor is ξ_{k} a standard deviation.

4. GAMMA VARIATION FOR θ

A search for mathematical tractability suggests that variation in θ be described by a gamma density:

$$
\begin{equation*}
\theta \sim e^{-\theta / \beta} \frac{(\theta / \beta)^{1 / \beta-1}}{\Gamma(1 / \beta)} \cdot \frac{1}{\beta} \equiv \operatorname{Gam}\left(\frac{1}{\beta}, \frac{1}{\beta}\right) \tag{33}
\end{equation*}
$$

so $E[\theta]=1$ and $\operatorname{Var}[\theta]=\beta$, and from which the joint density of observations by crew i is

$$
\begin{equation*}
f_{\underline{Y}}\left(\underline{y}_{i}, \underline{\eta}, \underline{\xi}\right)=\frac{\Gamma(K+1 / \beta)}{\Gamma(1 / \beta)}\left(\frac{1}{1+\beta c_{i}}\right)^{K+1 / \beta} \beta^{K} d_{i} \tag{34}
\end{equation*}
$$

The likelihood associated with I independent crews is

$$
\begin{equation*}
L(\underline{\eta}, \underline{\xi}, \underline{\beta} ; y)=\left(\frac{\Gamma(K+1 / \beta)}{\Gamma(1 / \beta)} \beta^{K}\right)^{I} \prod_{i=1}^{I}\left(\frac{1}{1+\beta c_{i}}\right)^{K+1 / \beta} d_{i} \tag{35}
\end{equation*}
$$

or

$$
\begin{align*}
l=\ln L & =I K^{\prime} \ln \beta+I \ln (\Gamma(K+1 / \beta) / \Gamma(1 / \beta)) \\
& -(K+1 / \beta) \sum_{i=1}^{I} \ln \left(1+\beta c_{i}\right)+\sum_{i=1}^{I} \ln d_{i} \tag{36}
\end{align*}
$$

After arrangement and re-parameterization so that $\phi_{k}=\ln _{n} \xi_{k}$ the \log-likelihood becomes

$$
\begin{equation*}
l=I \sum_{k=0}^{K-1} \ln (k+1 / \beta)-(K+1 / \beta) \sum_{i=1}^{I} \ln \left(1+\beta c_{i}\right)+\sum_{i=1}^{I} \sum_{k=1}^{K}\left(y_{i k}-\eta_{k}\right) \exp \left(-\phi_{k}\right)-I \sum_{k=1}^{K} \phi_{k} \tag{37}
\end{equation*}
$$

5. FITTING THE LOG-EXTREME VALUE (LOG-EV) MODEL BY MAXIMUM LIKELIHOOD

To obtain the maximum likelihood estimates of the parameters we iteratively solve the following equations, for which $k=1,2, \ldots, K$ throughout:

$$
\begin{align*}
& \partial l / \partial \beta=0 \\
& \partial l / \partial \eta_{k}=0 \tag{38}\\
& \partial l / \partial \phi_{k}=0
\end{align*}
$$

One Newton-Raphson iteration only is applied to each equation, after which the entire process is repeated until convergence. Typically, only two or three repetitions are required.

We record the derivatives needed for the above process.

$$
\begin{align*}
\frac{\partial l}{\partial \beta}= & -\left(K^{\prime}+1 / \beta\right) \sum_{i=1}^{I}\left(c_{i} /\left(1+\beta c_{i}\right)\right)+\left(1 / \beta^{2}\right) \sum_{i=1}^{I} \ln \left(1+\beta c_{i}\right) \\
& -I \sum_{k=0}^{K-1} 1 / \beta(1+k \beta) \tag{39}\\
\frac{\partial l}{\partial \eta_{k}}= & \left(\kappa^{\prime} \beta+1\right) \exp \left(-\phi_{k}\right) \sum_{i=1}^{I} e^{r_{i k}} /\left(1+\beta c_{i}\right)-I e^{-\phi_{k}} \tag{40}
\end{align*}
$$

where $r_{i k}=\left(y_{i k}-\eta_{k}\right) / \xi_{k}$, a residual; finally

$$
\begin{equation*}
\frac{\partial l}{\partial \phi_{k}}=(\kappa \beta+1) \sum_{i=1}^{I} r_{i k} e^{r_{i k}} /\left(1+\beta c_{i}\right)-\sum_{i=1}^{I} r_{i k}-I . \tag{41}
\end{equation*}
$$

The second derivatives are

$$
\begin{align*}
\frac{\partial^{2} l}{\partial \beta^{2}}= & I K^{\prime} / \beta^{2}+(K+1 / \beta) \sum_{i=1}^{I} c_{i}^{2} /\left(1+\beta c_{i}\right)^{2}+\left(2 / \beta^{2}\right) \sum_{i=1}^{I} c_{i} /\left(1+\beta c_{i}\right) \\
& -\left(2 / \beta^{3}\right) \sum_{i=1}^{I} \ln \left(1+\beta c_{i}\right)-\left(I / \beta^{4}\right) \sum_{k=0}^{K-1}(k+1 / \beta)^{-2} \\
& -\left(2 I / \beta^{3}\right) \sum_{k=0}^{K-1}(k+1 / \beta)^{-1} \tag{42}
\end{align*}
$$

$$
\begin{equation*}
\frac{\partial^{2} l}{\partial \eta_{k}^{2}}=\left(1+K^{-} \beta\right) e^{-2 \phi_{k}} \sum_{i=1}^{I}\left\{\left(e^{r_{i k}} /\left(1+\beta c_{i}\right)\right)\left[\left(\beta e^{r_{i k}} /\left(1+\beta c_{i}\right)\right)-1\right]\right. \tag{43}
\end{equation*}
$$

$$
\frac{\partial^{2} l}{\partial \phi_{k}^{2}}=(1+\kappa \beta) \sum_{i=1}^{I}\left\{\beta\left(r_{i k} e^{r_{i k}} /\left(1+\beta c_{i}\right)\right)^{2}-e^{r_{i k}} r_{i k}\left(1+r_{i k}\right) /\left(1+\beta c_{i}\right)\right\}
$$

$$
\begin{equation*}
+\sum_{i=1}^{I} r_{i k} \tag{44}
\end{equation*}
$$

In order to use the inverse of the Fisher information matrix to provide standard errors of the parameter estimates all cross-partial derivatives are required; we omit recording these in the interest of brevity; the expressions may be obtained from the authors. Our numerical experience has been that standard errors obtained from Fisher information tend to be too small, as judged from bootstrapping approaches next to be described.

6. BOOTSTRAPPING

A modern alternative for obtaining standard errors and approximate confidence limits is the parametric bootstrap of Efron (1979; esp. Remark K, p.25). This procedure has recently been applied to failure data in the context of the Challenger disaster by Dalal, Fowlkes and Hoadley (1988) and goes as follows:
put $\underline{\theta}=\left(\phi_{\omega}^{2}, \mu_{1}, \nu_{1}, \nu_{2}, . . \nu_{K} ; \sigma_{1}^{2}, \ldots, \sigma_{K}^{2}\right)$ in Model LOG N, and $\left(\beta ; \eta_{1}, \ldots, \eta_{K} ; \phi_{1}, \ldots, \phi_{K}\right)$ in Model LOG EV. Note that $\underline{\theta}=\left(\theta_{1}, \ldots, \theta_{p}\right)$ here denotes a generic parameter; it bears no direct relation to the $i^{\text {th }}$ crew effect in our LOG EV model, (25). Then our procedure is this:
(a) Estimate $\underline{\theta}$ from data; the result is $\underline{\hat{\theta}}(0)$, the point estimate of the parameters.
(b) Provisionally adopt $\underline{\hat{\theta}}(0)$ as the true value in the parametric model, in the present case (1) or (25).
(c) Simulate B independent data sets (bootstrap samples) from the model evaluated at $\underline{\hat{\theta}}(0):\left\{Y_{i k}(b), i=1, \ldots, I, k=1,2, \ldots, K ; b=1,2, \ldots, B\right\}$.
(d) Compute estimates of $\underline{\theta}$ for each sample, obtaining the bootstrap estimates $\{\underline{\hat{\theta}}(b), b=1,2, \ldots, B\}=\{\underline{\hat{\theta}}(B)\}$, the bootstrap distribution of $\underline{\hat{\theta}}$.
(e) Present relevant statistical summaries of marginal and joint distributions of $\{\underline{\hat{\theta}}(B)\}$: e.g. use as standard error of $\hat{\underline{\theta}}(0)$ components the corresponding standard deviations of the bootstrap estimate; use as confidence limits upper and lower percent points of the bootstrap sampling distributions, suitably adjusted. We present numerical illustrations in the next section.
(f) The same procedure can evaluate standard errors of, and confidence limits for predictions from data: in the present case prediction of the probability that a response time exceeds any given value is evaluated in terms of the model evaluated repeatedly at bootstrap parameter estimate values; see Dalal et al (1988) for an example. See Section 9 for an example in the present context.

Bootstrapping methods suggest themsel ves for comparing the adequacies of different models for fitting and predicting from specific data sets. Specifically, bootstrapping may assist in choosing between two, or more, candidate models.

In the present setting one may wish to predict the probability of non-success, i.e., of response time exceeding some time window of duration $t, \bar{P}(t ; \underline{\theta})$. Models A and B (e.g. our LOG N and LOG EV options) are estimated obtaining $\underline{\hat{\theta}}_{A}(0)$ and $\underline{\theta}_{B}(0)$. Then generate bootstrap samples for A and B using $\hat{\theta}_{A}(0)$ and $\widehat{\underline{\theta}}_{B}(0)$ respectively, resampling to estimate the mean-squared error of prediction when Model i is used to predict, given that the data comes from Model j; here $\{(i, j)\}=\{A, A ; A, B ; B, B ; B, A\}$. Prefer the model whose use minimizes the maximum estimated mean-squared error of prediction. An alternative strategy is to prefer prediction from the most conservative model: the one predicting the greatest risk; see Section 9 and Draper, Hodges, et al (1987).

Another option for residual examination is to compute estimates of the expected \log response times associated with each Task/Crew combination. Since crew effects are random, we estimate them in specific cases by their posterior means.

For the LOG N model, examination of (10) reveals that the posterior density of $\underline{\omega}_{i}$ is $N\left[\left(\bar{\omega}_{i} / \tau^{2}\right) /\left(1 / \tau^{2}+1 / \sigma_{\omega}^{2}\right), 1 /\left(1 / \tau^{2}+1 / \sigma_{w}^{2}\right)\right]$. We substitute in the mle's for the various parameters to estimate in a particular case:

$$
\hat{\omega}_{i}=\left(\hat{\omega}_{i} /(\tau)^{2}\right) /\left(1 / \tau^{2}+1 / \sigma_{\omega}^{2}\right)
$$

and then from (1), (8), (15), (16)

$$
\begin{equation*}
\hat{y}_{i k}=\left(\mu \hat{+} \nu_{.}\right)+\left(\nu_{k} \dot{-} \nu_{.}\right)+\hat{\omega}_{i}=\bar{y}_{. .}+\left(y_{. k}-y_{. .}\right)+\left[\left(y_{i .}-\bar{y}_{. .}\right) /(\hat{\tau})^{2}\right] /\left[1 /\left(\hat{\tau}^{2}\right)+1 / \hat{\sigma}_{\omega}^{2}\right] \tag{45}
\end{equation*}
$$

where all averages are suitably weighted. Note that the above formula for the mean acts, in effect as if a preliminary hypothesis test for homogeneity of crews is being applied: if σ_{ω}^{2} is very small, giving evidence that all crews are the same, then the estimate $\hat{y}_{i k} \simeq y_{. k}$, the (weighted) task mean for each crew. On the other hand if $\hat{\sigma}_{\omega}^{2}$ is very large then $\hat{y}_{i k} \simeq y_{. k}+\left(y_{i,}-y_{. .}\right)$, the task mean modified by the estimated effect for crew i. The effectiveness of such a smooth transition when pooling data was noted by Mosteller (1947).

For the LO(; FV model take the expectation of (27) with respect to the (estimated) posterior density of θ_{1}, which is $\operatorname{Gamma}\left(c_{i}+1 / \beta, K+1 / \beta\right)$ from (33) and (34). Using the first two terms of the asymptotic expansion we find

$$
\begin{aligned}
\hat{y}_{i k} & =\hat{E}\left[y_{i k}\right] \\
& =\hat{\eta}_{k}-0.5772 \hat{\xi}_{k}-\hat{\xi}_{k}\left[\ln (K+1 / \hat{\beta})-\ln \left(\hat{c}_{i}+1 / \hat{\beta}\right)-0.5 /(K+1 / \hat{\beta})\right]_{6}
\end{aligned}
$$

7. EXAMPLE DATA ANALYSES

The previous models have been used to analyze response time data from simulator experiments involving operators performing certain safety-related tasks. In Tables 1 and 2 appear actual data from two such: System L and System D. It is noted that certain task-crew combinations are missing, some because of simulator failure. Two procedures were adopted for dealing with these cases: (1) values were imputed by an EM-like process; see Little and Rubin (1987); alternatively, (2) a likelihood approach was taken that simply omits such values from the analysis by setting to unity the likelihood contribution associated with a cell having a missing response. Both approaches can be useful; the former leans more heavily on model correctness. The analyses reported here emphasize the use of a simple imputation procedure; the incomplete data results are also reported in the summary tables.

In addition to "true" missing values there are observations, here marked with asterisks, that were judged to result from operators following non-standard response strategies. It was judged to be useful to analyze the data both with, and without, including such values; when omitted, those nonentries in the data table were treated as missing values, entries imputed as above or treated as missing values, and analyses made using LOG N and LOG EV models.

Results of fitting, along with bootstrapped standard errors, appear in Tables 3 and 4 for System L, and Tables 5 and 6 for System D. Both tables exhibit main effects $\left(\mu+\nu_{k}, \eta_{k}\right)$ and scale parameters $\left(\sigma_{k}\right.$ and $\left.\xi_{k}\right)$ for LOG N/EV models computed under A: missing values, and non-standard strategy values, both treated as literally missing, using methods of the Appendix, and alternatively with entries imputed, and B: only the "true" missing values treated as missing. The imputation process used was iteration based on standard two-way ANOVA with fixed task and crew effects. This is a convenient crude approximation to a proper EM algorithmic approach, Little and Rubin (1987). In addition, random crew effect variance parameters, σ_{ω}^{2} and β respectively for the two models, were
estimated. Ther resampling-refitting parametric bootstrap supplied the standard errors; see Efron (1979) and Dalal, Fowlkes, and Hoadley (1988).

It is moted that for System L the fixed effects ($\mu \hat{+} \nu_{k}, \hat{\eta}_{k}$) under A and B agree closely, with the exception of Tasks 2 and 9. Data for Task 9, in Table 1, exhibits 8 out of 18 missing values, and a further 4 non-standard strategy values, all of which are far in excess of other times for that task. Data for 'Task 2 also exhibit substantially many missing values and non-standard times, the latter having resulted from operators following non-standard procedures and hence yielding times more lengthy than the other, acceptable, values. The noticeable differences are, however, still within 2 bootstrap standard errors. The corresponding scale effects (e.g., \log task time standard deviations) for Tasks 2 and 9 behave in corresponding fashion, increasing by factors of 2 to 3 if the non-standard times are included.

Similar behavior occurs for System D, although here the exceptions occur for Tasks 4 and 8. There are fewer missing and non-standard times reported for System D than for System L. Relatively large changes occur in the standard errors, as well as in main effect and scale parameter estimates, when several missing or non-standard times are encountered, and these are treated differently in the analysis.

In order to check for the effect of imputation, and also for that of apparent correlations between certain task times the analyses were re-run for System L omitting Tasks 2, 4, and 9. The results appear in Tables 7 and 8. Although specific numerical values are changed, the general pattern remains quite similar: the new numbers are quite often well within a standard error of the estimates that utilize data from all tasks.

8. MODEL CRITICISM VIA RESIDUAL EXAMINATION

In order to examine the overall fit of the models to data it is useful to conduct some form of residual analysis. We have chosen first to judge the overall degree of fit by computing and summarizing uniform residuals as described by Brillinger and Preisler (1983). In general for this procedure one estimates model parameters $\underline{\theta}$, from data and then examines the estimated probability integral transformation of the data, utilizing the fitted model: if the model is correct then the latter should closely resemble the uniform distribution. In Figures 1 through 8 we display plots and summary statistics for such estimated probability integral transforms of the present data set. We also exhibit the result of bootstrapping once: each model was allowed to create one set of bootstrap sample data utilizing the fitted parameter values; these values were then treated like raw data, and were then probability integral transformed and the results plotted and summarized.

The results have different implications for the appropriateness of the models for the two data sets. The left uniform plot of Figure 1 shows decided nonuniformity of residuals when the raw data is fitted by LOG N using the methods of the Appendix; however, if a bootstrap sample is generated using the fitted model parameters the results are far more uniform. This strongly suggests that the basic model is inappropriate. A similar implication is obtained by examining Figure 3, the residuals of which are associated with LOG EV. Figures 2 and 4 describe the residuals when imputation of missing and/or non-standard values is conducted. Notice that uniformity of residuals of the fit of the raw (plus imputed) data is greatly enhanced. This is not surprising since imputation is based on presumption of model correctness, and the missing and non-standard values are imputed using the presumed model. The same general behavior is observed when data from System D are fitted by the two models in various ways. Here, however, the departure of the residuals from uniformity, as shown on the left-most residual plots of Figures 5 and 7, seems less pronounced than is the
case for System L. Again, imputation improves the uniformity of the residuals and the apparent fit. We conclude that the log-additive models are more likely to be trustworthy for system D than for System L.

9. MODIFICATION OF THE MODELS FOR INITIAL DELAY

In the nuclear plant simulator exercises, and doubtless for other applications as well, certain task response times may begin after a cue different from, and later than, the actual initiating event. That is, the operational cue that triggers response may occur some time after a possible original cueing event (e.g., the first evidence of nuclear plant abnormality). Unfortunately, the time of the operational cue is not usually recorded in simulator practice, and so response time data, which may use initiating event time or some other well-specified event time for reference, tends to exhibit an initial delay. Such delays may be inferred from plant and initiating event information, or by examining the actual response time data. Note that ignoring such delays if they are appreciable, i.e., fitting a 2-parameter LOG N or LOG-EV model when a 3-parameter specification is more appropriate can importantly change the estimated parameter values, particularly the LOG N σ_{k} or LOG EV ξ_{k}, the measures of within-task variability. Specifically, if the delay is ignored and our current models employed uncritically when a delay $\gamma_{k}>0$ is required then the estimated values, $\hat{\sigma}_{k}$ and $\hat{\xi}_{k}$, will be biased downwards (under-estimated), sometimes quite significantly.

To illustrate the effeci of a rough accounting for delay examine the Task 10 data for system L in Table 1. The minimum value is 1402 and the maximum is 3450 , so there is an appreciable delay associated with beginning the task as compared to the variability of the response times. If the data is taken at face value and our LOG N and LOG EV models fitted, then Table 3 exhibits $\xi_{10}=0.28$ considerably smaller than that for other tasks. If, however, a rough adjustment is made for delay by subtracting 1000 from each Task 10 response time data value then the simple standard deviation estimate for logged (times1000) for Task 10 becomes 0.59 , far more similar to other task response time standard deviations.

At present the LOG N and LOG EV programs fit 2-parameter models, so accounting for delay, γ_{k}, must be done off-line. A formal approach to the es-
timation problem for the Weibull model is given by Smith and Naylor (1987); that paper also references other relevant articles.

10. RISK CALCULATIONS

An important application of the LOG N and LOG EV models is to risk analysis: it is desired to estimate the probability that a task's response time occurs within a particular time window, for in that case (some aspect of) the threat has been averted. We will refer to the probability that response time exceeds the time window as the human interaction risk associated with the task.

It is easy to make point estimates of the required probabilities using both existing models: one simply replaces the model parameters associated with the task of interest by their maximum likelihood estimates. A natural way in which to handle crew effect is simply to remove the crew condition ω or θ by integrating it out with respect to the appropriate Normal/Gauss or Gamma estimated prior. In order to assess the effect of a particular crew on the risk it is necessary to calculate the posterior density for that crew and then integrate out on ω or θ with respect to that posterior. It may well be of interest to compare the estimated risk as it depends upon which crew is in place when an initiating event occurs in order to assess the effect of individual crews directly on risk. This is not done here.

11. RISK UNCER'TAINTY

In order to assess the the uncertainty inherent in the risk estimation one may once again bootstrap. 'The procedure is this:
(a) Estimate θ from data to obtain $\hat{\theta}_{0}$:

$$
\begin{gathered}
\mathrm{LOG} \mathrm{~N}: \hat{\theta}_{0}=\left(\hat{\sigma}_{\omega}^{2}, \hat{\mu}, \hat{\nu}, \hat{\sigma}^{2}\right) \\
\mathrm{LOG} \mathrm{EV}: \hat{\theta}_{0}=\left(\hat{\beta}, \hat{\eta}, \hat{\xi}^{2}\right)
\end{gathered}
$$

(b) Provisionally adopt $\hat{\theta}_{0}$ as the true value in the parametric model.
(c) Simulate B independent data sets from the model with parameter $\hat{\theta}_{0}$: $\left\{y_{i k}(b)\right.$, with $\left.b=1,2, \ldots, B\right\}$.
(d) Estimate θ from each sample of (c). Obtain $\{\hat{\theta}(b), b=1,2, \ldots, B\}$;
(e) Compute $\mathrm{P}\left\{T_{\cdot k}>w_{k} \mid \theta(b)\right\}=\mathrm{P}\left\{\ln T_{\cdot k}>\ln w_{k} \mid \theta(b)\right\} ;$
$=P\left\{Y_{k}>w_{k}^{\prime} \mid \theta(b)\right\} \equiv r_{k}(b)$, where

$$
w_{k}^{\prime}=\ln w_{k}
$$

The risk associated with Task k estimated from bootstrap sample $b(b=$ $1,2, \ldots, B)$ for each model. that is, calculate the probability that the time window w_{k} is exceeded using the $b^{\text {th }}$ set of parameters estimated. For our two models and $b=1,2, \ldots, B)$, and also $b=0$, the original estimate, thus becomes, respectively, for the two models,

$$
\begin{gather*}
R_{k}(b ; \text { LOG } \mathrm{N})=1-\Phi\left(\frac{w_{k}^{\prime}-\left(\hat{\mu}(b)+\hat{\nu}_{k}(b)\right)}{\sqrt{\hat{\sigma}_{\omega}^{2}(b)+\hat{\sigma}_{k}^{2}(b)}}\right), \tag{47}\\
R_{k}(b ; \text { LOG EV })=\left(1+\hat{\beta}(b) \exp \left(w_{k}^{\prime}-\hat{\eta}_{k}(b)\right) / \hat{\xi}(b)\right)^{-1 / \dot{\beta}(b)} \tag{48}
\end{gather*}
$$

The following table exhibits risk calculation for prescribed windows; the lengths chosen are for illustration only. Calculations have been made both without nonstandard strategy values (A) and including non-standard strategy values (B); any missing or left-out values were imputed as before.

Examination of the point estimates in Table shows that there is considerable similarity in the orders of magnitude of the risks given by LOG N and LOG EV. However, LOG EV values are consistently below those for LOG N, as are the corresponding confidence limits. It is, thus, more conservative to adopt LOG N model-based risk estimates than to use those based on LOG EV, or equivalently the Weibull model. The exception, Task 9, is probably traceable to the many missing values exhibited.
(f) Present statistical summaries of marginal and joint distribution of $R_{k}(b)$: e.g., use as standard error for the original risk estimate, $R_{k}(0)$, the standard deviation

$$
\begin{equation*}
S_{R_{k}}=\sqrt{\frac{1}{B-1} \sum_{k=1}^{K}\left(R_{k}(b)-\bar{R}_{k}\right)^{2}} \tag{49}
\end{equation*}
$$

Note that the overall risk associated with a particular initiating event depends upon the risks associated with all tasks (human interactions) associated with response to the event. These risks may well be dependent probabilities, at minimum because all tasks presumably confront the same crew. To handle the dependency induced by a common crew one can assume conditional independence, multiply risks conditional on crew to obtain the risks associated with joint events, and then integrate out with respect to the crew's posterior density. The calculation may be performed explicitly for the LOG EV model since a closed-form elementary function expression for the extreme-value survivor function exists; no such simple calculation can be carried out for the LOG N, but numerical procedures are always available.

Examination of the results suggests considerable similarity between the risks calculated using the LOG N and LOG EV models. It is, however, noticeable that for all tasks except Tasks 3 and 9, LOG N predicts a slightly greater risk than does LOG EV, and generally with slightly larger standard error. Of course in most cases shown the risks associated with the window values in our example are too high to be realistic; the windows were chosen for illustration only.

The above calculations have been carried out using parameter values obtained under imputation. Thus the apparent similarity of risks across models is probably overstated, and, in view of the suspicion cast on the fits to system L data (see Section 8) we should treat the System L, risks with caution.

12. SUMMARY AND CONCLUSIONS

In this article we have suggested and shown how to fit, by maximum likelihood, two models for operator response times. The fits of the models to two sets of (actual) data are displayed and compared. Uncertainties are assessed by parametric bootstrapping. Complications involving missing values and consequent lack of balance are dealt with by direct likelihood computation as well as by a simple form of imputation. Finally, the fitted models are applied to estimate the risk of exceeding (hypothetical) time windows; associated uncertainties, i.e., standard errors and confidence limits, are obtained by bootstrapping.

We view this work as a pilot or feasibility study intended to illustrate and explore possibly useful approaches and methodology to an important area. Outstanding problems remain: the models put forward were chosen for their abilities to account for some aspects of the real situation and for relative tractability, but many other forms could be conjured up, fitted, and applied to infer risk, as defined here. It is somewhat interesting to find that risks estimated from the same data using the different models agree rather closely; it is not unlikely that the agreement will suffer if the windows are increased so as to achieve much smaller, and presumably more realistic risk values.

The bootstrap standard errors and confidence limits warn that although the present models tend to agree in their risk assessments the uncertainty is still rather large, even if wrong-model or structural uncertainty is ignored; see Draper, Hodges et al (1987) for discussion. In order to reduce the uncertainty of estimation, e.g. to reduce standard error size, it is often proposed to aggregate or pool data, either from similar tasks in the same environment (plant), or for the same task across "similar" environments. Both procedures are worthy of investigation, but will be credible only if suitable adjustments are made to reduce bias. Adjustments can be carried out by using models resembling the types suggested here, possibly enhanced to include regression terms "explaining" responses in terms of measured and qualitative crew and plant cliaracteristics ("performance
slaping factors" is the jargon in certain risk assessment circles). To date, formal adjustment attempts by regression have been inconclusive but are a form of insurance that slould be included, and validated to the greatest extent possible, if aggregation or pooling is contemplated, particularly across plants. Inter-plant variability may be appreciable because of variations in management philosophy and style.

In general, it seems advisable to utilize bootstrapping as extensively as possible to build an appreciation for the variabilities and uncertainties involved when using models. Bootstrapping that uses direct re-sampling as originally discussed, Efron (1979), seems difficult or impossible for situations such as are described here unless vastly more data becomes available and better, more scientifically based, models and true replications can be employed. Consequently, use of parametric bootstrapping becomes necessary. However, parametric bootstrapping that consumes data from more realistic, and elaborate, models and their fits to simpler structures can be useful and informative. But such exercises cannot directly substitute for data obtained under truly operational circumstances, which even the best simulator data can not aspire to be.

13. ACKNOWLEDGEMENTS

The support, encouragement and stimulation of David Worledge of EPRI was essential and is much appreciated, as is that of A. J. Spurgin and P. Moieni of APG. We look forward to applying the models and ideas to military operator problems; S. Parry of the Dept. of Operations Research, NPGS, and Capt. J. Hoffman of TRAC Monterey have been encouraging this effort

Let $d_{i k}=1$ if the observation at (i, k) [i.e., for crew i , task k] is available; otherwise $d_{i k}=0$. Then the component of likelihood associated with (Crew) i is

$$
\begin{gathered}
f_{\underline{y_{i}}}\left(\underline{y_{i}}, \mu, \underline{\nu}, \omega_{i}\right)=\prod_{k=1}^{K}\left\{\frac{e^{-\frac{1}{2}\left(y_{\bullet k}-\mu-\nu_{k}-\omega_{1}\right)^{2} / \sigma_{k}^{2}}}{\sqrt{2 \pi} \sigma_{k}}\right\}^{d_{i k}} \\
=\frac{\rho^{-\frac{1}{2} \sum_{k=1}^{K} d_{i k}\left(y_{\bullet k}-\mu-\nu_{k}-\omega_{i}\right)^{2} / \sigma_{k}^{2}}}{(\sqrt{2 \pi})^{\sum_{k}^{d_{i k}}} \prod_{k=1}^{K} \sigma_{k}^{d_{i k}}}
\end{gathered}
$$

Now write

$$
\sum_{k=1}^{K} d_{i k}\left(y_{i k}-\mu-\nu_{k}-\omega\right)^{2} \cdot \frac{1}{\sigma_{k}^{2}}=\frac{\left(\bar{\omega}_{i}-\omega\right)^{2}}{\tau_{i}^{2}}+K_{i}
$$

After differentiation re ω,

$$
\sum_{k=1}^{K} \frac{d_{i k}}{\sigma_{k}^{2}}\left(y_{i k}-\mu-\nu_{k}-\omega\right)=\frac{\left(\bar{\omega}_{i}-\omega\right)}{\tau_{i}^{2}}
$$

which implies, identifying terms of order 1 and ω, and writing

$$
\left\{\begin{array}{l}
\sum_{k=1}^{K} d_{i k}\left(y_{i k}-\mu-\nu_{k}\right) p_{k}=\bar{\omega}_{i} / \tau_{i}^{2} \\
\sum_{k=1}^{K} d_{i k} p_{k}=1 / \tau_{i}^{2}
\end{array}\right.
$$

Hence $\tau_{i}^{2}=1 / \sum_{k=1}^{K} d_{i k} p_{k}$
$\bar{\omega}_{i}=\tau_{i}^{2} \sum_{k=1}^{K} d_{i k}\left(y_{i k}-\mu-\nu_{k}\right) p_{k}=y_{i}-\mu-\tau_{i}^{2} \sum_{k=1}^{K} d_{i k} \nu_{k} p_{k}$, where $y_{i} .=\tau_{i}^{2} \sum_{k=1}^{K} d_{i k} y_{i k} p_{k}$ and

$$
h_{i}=\sum_{k=1}^{K} d_{i k}\left(y_{i k}-\mu-\nu_{k}-\omega_{i}\right)^{2} p_{k}
$$

Thus re-write the likelihood as

$$
\begin{gathered}
\int \underline{y}_{\underline{y}}\left(\underline{y}_{i} ; \mu, \underline{\nu}, \underline{\sigma}, \sigma_{\omega}^{2}\right)=e^{-\frac{1}{2} K_{i}} \int_{-\infty}^{\infty} \frac{\left.e^{-\frac{1}{2}\left\{\left(\bar{\omega}_{i}-\omega\right)^{2} / \tau_{i}^{2}\right.}\right\}^{-\frac{1}{2} \omega^{2} / \sigma_{\omega}^{2}} d w}{(\sqrt{2 \pi})^{\Sigma d_{i k} k} \sigma_{k}^{d_{i k}} \sqrt{2 \pi} \tau_{i}} \\
\propto \frac{e^{-\frac{1}{2} K_{i}} e^{-\frac{1}{2} \bar{\omega}_{i}^{2} /\left(\tau_{i}^{2}+\sigma_{\omega}^{2}\right) \sqrt{\tau_{i}^{2}}}}{\left\{\prod_{k=1}^{K} \sigma_{k}^{d_{i} k}\right\} \sqrt{\tau_{i}^{2}+\sigma_{\omega}^{2}}}
\end{gathered}
$$

Hence the likelihood assumes the form

$$
L=\prod_{i=1}^{I} \frac{e^{-\frac{1}{2} K_{i}} e^{-\frac{1}{2} \tilde{\omega}_{i}^{2} /\left(\tau_{i}^{2}+\sigma_{\omega}^{2}\right)}}{\prod_{k=1}^{K} \sigma_{k}^{d_{i} k} \sqrt{\tau_{i}^{2}+\sigma_{\omega}^{2}}} \sqrt{\tau_{i}^{2}}
$$

Taking logarithms, we obtain

$$
\begin{gathered}
l=2 \ln L=-\sum_{i=1}^{I} K_{i}-\sum_{i=1}^{I} \frac{\bar{\omega}_{i}^{2}}{\tau_{i}^{2}+\sigma_{\omega}^{2}}+\sum_{i=1}^{I} \ln \tau_{i}^{2}-\sum_{k=1}^{K} n_{k} \ln \sigma_{k}^{2}-\sum_{i=1}^{I} \ln \left(\tau_{i}^{2}+\sigma_{\omega}^{2}\right), \\
=-\sum_{i=1}^{I} K_{i}-\sum_{i=1}^{I} \frac{\bar{\omega}_{i}^{2}}{\tau_{i}^{2}+\sigma_{\omega}^{2}}+\sum_{i=1}^{I} \ln \tau_{i}^{2}+\sum_{k=1}^{K} n_{k} \ln p_{k}-\sum_{i=1}^{I} \ln \left(\tau_{i}^{2}+\sigma_{\omega}^{2}\right)
\end{gathered}
$$

where

$$
n_{k}=\sum_{i=1}^{I} d_{i k}
$$

Differentiating first re μ, we obtain
$\frac{\partial l}{\partial \mu}=-\sum_{i=1}^{I}\left(\frac{\partial K_{i}}{\partial \mu}+\frac{2 \bar{\omega}_{i}}{\tau_{i}^{2}+\sigma_{\omega}^{2}} \frac{\partial \bar{\omega}_{i}}{\partial \mu}\right)$
$\frac{\partial \kappa_{i}^{-}}{\partial \mu}=0, \frac{\partial \bar{\omega}_{i}}{\partial \mu}=-1$
Hence

$$
\begin{gathered}
\frac{\partial l}{\partial \mu}=-\sum_{i=1}^{I} \frac{2 \bar{\omega}_{i}(-1)}{\tau_{i}^{2}+\sigma_{\omega}^{2}}=0 \\
\Rightarrow \sum_{i=1}^{I} \frac{\bar{\omega}_{i}}{\left(\tau_{i}^{2}+\sigma_{\omega}^{2}\right)}=0
\end{gathered}
$$

$$
\begin{gathered}
\frac{\left(y_{i .}-\mu-\tau_{i}^{2} \sum_{k=1}^{K} d_{i k} \nu_{k} p_{k}\right)}{\left(\tau_{i}^{2}+\sigma_{\omega}^{2}\right)}=0 \\
\hat{\mu} \sum_{i=1}^{I}\left(\tau_{i}^{2}+\sigma_{\omega}^{2}\right)^{-1}=\sum_{i=1}^{I} \frac{\left(y_{i .}-\tau_{i}^{2} \sum_{k} d_{i k} p_{k} \nu_{k}\right)}{\left(\tau_{i}^{2}+\sigma_{\omega}^{2}\right)} \\
\Rightarrow \hat{\mu}=\sum_{i} \frac{\left(y_{i .}-\tau_{i}^{2} \sum_{k} d_{i k} \nu_{k} p_{k}\right)}{\left(\tau_{i}^{2}+\sigma_{\omega}^{2}\right)} / \sum_{i}\left(\tau_{i}^{2}+\sigma_{\omega}^{2}\right)^{-1}
\end{gathered}
$$

Next, differentiate re ν_{l} :

$$
\begin{gathered}
\frac{\partial l}{\partial \nu_{l}}=-\left\{\sum_{i} \frac{\partial K_{i}}{\partial \nu_{l}}+\sum_{i} \frac{2 \bar{\omega}_{i}}{\tau_{i}^{2}+\sigma_{\omega}^{2}} \cdot \frac{\partial \bar{\omega}_{i}}{\partial \nu_{l}}\right\}=0 \\
\frac{\partial K_{i}^{\prime}}{\partial \nu_{l}}=\frac{\partial}{\partial \nu_{l}}\left\{\sum_{k} d_{i k}\left(y_{i k}-\mu-\nu_{k}-\bar{\omega}_{i}\right)^{2} p_{k}\right\} \\
=2 \sum_{k} d_{i k}\left(y_{i k}-\mu-\nu_{k}-\bar{\omega}_{i}\right) p_{k}\left(-\delta_{l k}-\frac{\partial \bar{\omega}_{i}}{\partial \nu_{l}}\right) \\
\frac{\partial \bar{\omega}_{i}}{\partial \nu_{l}}=-\tau_{i}^{2} d_{i l} p_{l}
\end{gathered}
$$

Hence

$$
\frac{\partial l}{\partial \nu_{l}}=-\sum_{i=1}^{I}\left\{2 \sum_{k} d_{i k}\left(y_{i k}-\mu-\nu_{k}-\bar{\omega}_{i}\right) p_{k}\left(-\delta_{l k}+\tau_{i}^{2} d_{i l} p_{l}\right)+2 \frac{\bar{\omega}_{i}}{\tau_{i}^{2}+\sigma_{\omega}^{2}}\left[-\tau_{i}^{2} d_{i l} p_{l}\right]\right\}=0
$$

Thus,

$$
-\sum_{i=1}^{l} d_{i l}\left\{\tau_{i}^{2} d_{i l} p_{l} \sum_{k} d_{i k}\left(y_{i k}-\mu-\nu_{k}-\bar{\omega}_{i}\right) p_{k}-d_{i k}\left(y_{i l}-\mu-\nu_{l}-\bar{\omega}_{i}\right) p_{l}-\frac{\bar{\omega}_{i} \tau_{i}^{2}}{\tau_{i}^{2}+\sigma_{\omega}^{2}} d_{i l} p_{l}\right\}=0
$$

Further simplification results in

$$
-\sum_{i} d_{i l}\left\{\tau_{i}^{2} \sum_{k} d_{i k}\left(y_{i k}-\mu-\nu_{k}-\bar{\omega}_{i}\right) p_{k}-\left(y_{i l}-\mu-\nu_{l}-\bar{\omega}_{i}\right)-\frac{\bar{\omega}_{i} \tau_{i}^{2}}{\tau_{i}^{2}+\sigma_{\omega}^{2}}\right\}=0
$$

Hence

$\nu_{l} \sum_{l} d_{i l}=\sum_{i=1}^{I} d_{i l}\left[-\tau_{i}^{2} \sum_{k} d_{i k}\left(y_{i k}-\mu-\nu_{k}-\bar{\omega}_{i}\right) p_{k}+\left(y_{i l}-\mu-\bar{\omega}_{i}\right)+\frac{\tau_{i}^{2} \bar{\omega}_{i}}{\left(\tau_{i}^{2}+\sigma_{\omega}^{2}\right)}\right]$
$\Rightarrow \nu_{l}=\frac{1}{n_{l}} \sum_{i=1} d_{i l}\left\{-\tau_{i}^{2} \sum_{k} d_{i k}\left(y_{i k}-\mu-\nu_{k}-\bar{\omega}_{i}\right) p_{k}+\left(y_{i l}-\mu-\bar{\omega}_{i}\right)+\frac{\tau_{i}^{2} \bar{\omega}_{i}}{\left(\tau_{i}^{2}+\sigma_{\omega}^{2}\right)}\right\}$.
We now differentiate re p_{l}, noting

$$
\begin{aligned}
& \frac{\partial \tau_{i}^{2}}{\partial p_{l}}=-\frac{1}{\left(\sum_{k} d_{i k} p_{k}\right)^{2}} d_{i l}=-\tau_{i}^{4} d_{i l} \\
& \frac{\partial \bar{\omega}_{i}}{\partial p_{l}}=\tau_{i}^{2} d_{i l}\left(y_{i l}-\mu-\nu_{l}\right)+\left\{\sum_{k} d_{i k}\left(y_{i k}-\mu-\nu_{k}\right) p_{k}\left(-\tau_{i}^{4} d_{i l}\right)\right\} \\
& =\tau_{i}^{2} d_{i l}\left\{y_{i l}-\mu-\nu_{l}-\tau_{i}^{2} \sum_{k} d_{i k}\left(y_{i k}-\mu-\nu_{k}\right) p_{k}\right\} \\
& =\tau_{i}^{2} d_{i l}\left(y_{i l}-\mu-\nu_{l}-\bar{\omega}_{i}\right)
\end{aligned}
$$

$\frac{\partial K_{i}}{\partial p_{l}}=d_{i l}\left(y_{i l}-\mu-\nu_{l}-\bar{\omega}_{i}\right)^{2}+2 \sum_{k} d_{i k}\left(y_{i k}-\mu-\nu_{k}-\bar{\omega}_{i}\right) p_{k}\left\{-\tau_{i}^{2} d_{i l}\left(y_{i l}-\mu-\nu_{l}-\bar{\omega}_{i}\right)\right\}$
$=d_{i l}\left(y_{i k}-\mu-\nu_{k}-\bar{\omega}_{i}\right)\left\{\left(y_{i l}-\mu-\nu_{l}-\bar{\omega}_{i}\right)-2 \tau_{i}^{2} \sum_{k} d_{i k}\left(y_{i k}-\mu-\nu_{k}-\bar{\omega}_{i}\right) p_{k}\right\}$
Noting also that
$\tau_{i}^{2} \sum_{k} d_{i k}\left(y_{i k}-\mu-\nu_{k}-\bar{\omega}_{i}\right) p_{k}=\tau_{i}^{2} \sum_{k} d_{i k}\left(y_{i k}-\mu-\nu_{k}\right) p_{k}-\bar{\omega}_{i} \tau_{i}^{2} \sum_{k} d_{i k} p_{k}=\bar{\omega}_{i}-\bar{\omega}_{i}=0$
it follows that

$$
\frac{\partial K_{i}^{-}}{\partial p_{l}}=d_{i l}\left(y_{i l}-\mu-\nu_{l}-\bar{\omega}_{i}\right)^{2} .
$$

$$
\begin{aligned}
\frac{\partial l}{\partial p_{l}} & =\sum_{i=1}^{l} d_{l l}\left(y_{l l}-\mu-\nu_{l}-\omega_{i}\right)^{2}-\frac{2 \omega_{\imath} \tau_{i}^{2}}{\left(\tau_{i}^{2}+\sigma_{\omega}^{2}\right)}\left(y_{l l}-\mu-\nu_{l}-\omega_{i}\right) \\
& -\frac{(-1) \omega_{i}^{2}\left(1-\tau_{i}^{2} d_{l l}\right)}{\left(\tau_{i}^{2}+\sigma_{\omega}^{2}\right)^{2}}+\frac{1}{\tau_{i}^{2}}\left(-\tau_{i}^{4} d_{i l}\right)+\frac{n_{l}}{p_{l}}-\frac{1\left(-\tau_{i}^{4} d_{i l}\right)}{\left(\tau_{i}^{2}+\sigma_{\omega}^{2}\right)}
\end{aligned}
$$

Hence,

$$
\frac{\partial l}{\partial p_{l}}=0 \Rightarrow
$$

$$
\begin{aligned}
& \sum_{i=1}^{l} d_{i l}\left\{-\left(y_{i l}-\mu-\nu_{l}-\bar{\omega}_{i}\right)\left[y_{i l}-\mu-\nu_{l}-\bar{\omega}_{i}+\frac{2 \bar{\omega}_{i} \tau_{i}^{2}}{\tau_{i}^{2}+\sigma_{\omega}^{2}}\right]-\frac{\bar{\omega}_{i}^{2} \tau_{i}^{4}}{\left(\tau_{i}^{2}+\sigma_{\omega}^{2}\right)^{2}}-\tau_{i}^{2}+\frac{\tau_{i}^{4}}{\tau_{i}^{2}+\sigma_{\omega}^{2}}\right\}+\frac{n_{l}}{p_{l}}= \\
& p_{l}=n_{l} /\left\{\sum_{i=1}^{I} d_{i l}\left[\left(y_{i l}-\mu-\nu_{l}-\bar{\omega}_{i}\right)\left(y_{i l}-\mu-\nu_{l}-\bar{\omega}_{i}+\frac{2 \bar{\omega}_{i} \tau_{i}^{2}}{\tau_{i}^{2}+\sigma_{\omega}^{2}}\right)\right]+\frac{\bar{\omega}_{i}^{2} \tau_{i}^{4}}{\left(\tau_{i}^{2}+\sigma_{\omega}^{2}\right)^{2}}+\tau_{i}^{2}-\frac{\tau_{i}^{4}}{\tau_{i}^{2}+\sigma_{t}}\right.
\end{aligned}
$$

Finally, differentiating re σ_{ω}^{2}, we find

$$
\frac{\partial l}{\partial \sigma_{\omega}^{2}}=\sum_{i=1}^{I} \frac{\bar{\omega}_{i}^{2}}{\left(\tau_{i}^{2}+\sigma_{\omega}^{2}\right)^{2}}-\sum_{i=1}^{I} \frac{1}{\left(\tau_{i}^{2}+\sigma_{\omega}^{2}\right)}=0
$$

which implies

$$
\sigma_{\omega}^{2}=\sum_{i=1}^{I} \frac{\bar{\omega}_{i}^{2}-\tau_{i}^{2}}{\left(\tau_{i}^{2}+\sigma_{\omega}^{2}\right)^{2}} / \sum_{i=1}^{I} \frac{1}{\left(\tau_{i}^{2}+\sigma_{\omega}^{2}\right)}
$$

The following iterative procedure was employed:
(a) Use imputed values to obtain $\hat{\mu}(0), \hat{\sigma}_{\omega}^{2}(0), \hat{\gamma}_{k}(0), \hat{p}_{k}(0)[k=1, \ldots, K]$
(b) Solve for $\hat{\mu}$ (1) using (A-1) Update $\bar{\omega}_{i}$
(c) Solve for $\hat{\nu}_{l}(1)$ using (A-2) Update $\bar{\omega}_{i}$
(d) Solve for \hat{p}_{l} using (A-3) Update $\hat{\omega}_{i}, \tau_{i}^{2}$
(e) Solve for σ_{ω}^{2} using (A-4)

Repeat (b) through (e) until convergence.

REFERENCES

Anderson, T. W. (1984) An Introduction to Multivariate Statistical Analysis (Second Edition). New York: John Wiley.

Brillinger, D. R., Preisler, H. K. (1983) "Maximum likelihood estimation in a latent variable problem." Studies in Econometrics, Time Series and Multivariate Statistics. New York: Academic Press.

Crowder, M. (1985) "A distributional model for repeated failure time measurements." Journal of the Royal Statistical Society, Ser. B, 47, pp. 447452.

Crowder, M. (1989). "A multivariate distribution with Weibull connections." Journal of the Royal Statistical Society, Ser, B, 51, No. 1, pp. 93-107.

Dalal, S. R., Fowlkes, E. B. and Hoadley, B. (1990) "Risk Analysis of the Space Shuttle: Pre-Challenger prediction of failure." Journal of the American Statistical Association, 8.4, No. 408, pp. 945-967.

Denby, L., and Mallows, C. (1988) "Robust analysis of mixed models." AT\&T Statistical Research Reports, No. 65. ATBT Bell Laboratories, Murray Hill, NJ.

Draper, D., Hodges, J. S., Leamer, E., Morris, C. N., Rubin, D. B. (1987). A Research Agenda for Assessment and Propagation of Model Unccrtainty. Rand Note N-2683-RC. The Rand Corporation, Santa Monica, CA.

Efron, B. (1979) "Bootstrap methods: another look at the jackknife." Annals of Statistics, 7, pp. 1-26.

Gaver, D. P., and O’Muircheartaigh, I. G. (1987). "Robust empirical Bayes analyses of event rates." Technometrics, 29, No. 1, pp. 1-15.

Gaver, I). P., Jacobs, P. A., and O'Muircheartaigh, I. G. (1990) "Regression analysis of hierarchical Poisson-like event rate data: superpopulation model effect on predictions." (to appear in Communications on Statistics).

Hougaard, P. (1986) "Survival models for heterogeneous populations derived from stable distributions." Biometrika, 73, pp. 387-396.

Hougaard, P. (1986) "A class of multivariate failure time distributions." Biometrika, 73, pp. 671-678.

Kimber, A. C., and Crowder, M. J. (1988) A Repeated Measurements Model with Applications in Psychology, University of Surrey Technical Report on Statistics, No. 65.

Little, R. J. A., and Rubin, D. B (1987) Statistical Analysis with Missing Data. New York: John Wiley and Sons.

Mosteller, F. W. (1947) "On pooling data." Journal of the American Statistical Association, 43, No. 242, pp. 231-242.

Scheffé, II. (1959) The Analysis of Variance. New York: John Wiley and Sons.

Smith, R. L., and Naylor, J. C. (1987) "Statistics of the three-parameter Weibull distributions." Annals of Operations Research, 9, pp. 577-587.

Watson, A. S. and Smith, R. L. (1985) "An examination of statistical theories for fibrous materials in the light of experimental data." Journal of Materials Science, 20, pp. 3260-3270.

TASK/CREW	1	2	3	4	5	6	7	8	9	$10 \quad 11$	12	13	$14 \quad 15$	16	17	18
1	87	76	92*	64	134*	9	29	14	59	8520	7	61	3748	§	11	11
2	88	370*	93*	65	§	49	30	247*	60	8631	§	75	38 165*	§	12	12
3	164	34	51	162	109	70	§	25	46	$48 \quad 67$	28	151	$34 \quad 26$	§	20	25
4	§	§	453	261	406	§	§	371	91	876668	320	§	310678	§	§	§
5	196	57	§	125	218	260	§	92	65	14951	110	90	$80 \quad 62$	§	84	14
6	20	16	21	19	21	3	8	12	19	$22 \quad 20$	20	9	$9 \quad 15$	§	§	11
7	§	§	§	§	§	160	171	54	87	$75 \quad 76$	65	68	$126 \quad 87$	§	186	121
8	142	730	314	930	509	324	§	1159	493	256420	360	449	646500	§	§	§
9	22	§	721*	2149*	§	1036*	62	10	101	§ §	§	208*	$19 \quad 37$	§	§	§
10	§	1410	1676	§	§	2287	3450	22981	1402	22931565	2340	1522	§ 1665	§	§	1473
11	§	§	377	89	242	392	802	135	718	246122	978		$230 \quad 60$	535	273	69
12	574	§	2146	§	630	749	3144	1767	840	10041246	1055	1419	18882578	2338	§	1046

[^0]
90% CONFIDENCE

 MoNOvommomht
－00000000000
oooogooooooo momonnivo monm

000000000000

óo它óoóóo さんぃーNoNañă －100momNoOHCN
－000000000c）0
－100以NN1000ホは monmminmorno
\qquad 000000000000
oonNNJNFONが
$0000000000<10$

Not o mostroavy
 bomovmminoun ．00000000000

D00000000000

－00000000000

$*$ OOOOOOOOOGO
 1．）ovonnNu nwmm DODODODODOCO

－․․ットにルonm

ouon ornNo w wo 000000000000

$$
\stackrel{ே}{\rightleftarrows}
$$

$\begin{array}{rr}90 \% \text { CONFIDENCE INTERVAL } \\ \text { UPPER } & \text { LOWER } \\ 0.94(0.43) & 0.48(0.28)\end{array}$

 mmmivnivininn
MODEL：Log N
 NoONNinNHOUNN
○OOOOOOOOODO

－00000000000
 NOHOOMHNOUजM UPPER
 000－00000000

$0000000^{\circ} 00^{\circ}$

－NovNooabunguna $000000-100-100$
00000000000
○○べのスかったかった NovaのNG mo On HoOanNuOONON XSIX
 DODODODODODO

$\stackrel{\rightharpoonup}{0}$
 Ooooogoooooo
onoomNonnwom かo bovinvinnnain ．00000000000

TASK EFFECTS
 000000000000 Nowowminino on $\stackrel{\square}{\llcorner }$

000000000000

$>$

1

mminivivinnir

 JONVNOONNMNN D00000000000 ovouvnuoownow
 D00000000000

すごべのにかったのこの
MOUN 以 N N J J N N
 OOMNJNWMMONA －00000000000

जu－nomincminn
○00000000000

ーN゙Nーロールロロール
DODODODODODO

Qoogoogonooo nounnagorinnu 00000000 －100
 NMNJNーNNOFMन

$$
\beta
$$

$$
0.42(0.33)
$$

RISK －0000000 1000
士OONMNーOOUNM

$$
00000 \mathrm{mooNo} \text { - }
$$

○OOOODOOODOO

べへのへへへへへへへべの
NowonnommNu゚O
 000000000000

 000000000000

90% CONFIDENCE	
INTERVAL	
UPPER	LOWER

$\begin{aligned} & 000000000000 \\ & \text { MonNMaNvGNM }\end{aligned}$
DODODODODODO

ODODODODOCOO

 aroononvinn nan 00000000 HOOO

$\stackrel{x}{>}$
+
\pm
\approx
$\stackrel{\leftarrow}{\sim}$

		on oo voinnoinn NさONいONーH゙
	\sim	－000000000
	แ	－• ．．．．．
		－0ッ0000000
		いいいいいいい
	ロ	
	$\stackrel{\square}{1}$	NJOHनOHHWO
\cdots	en	0000000000
x		－• ．
\cdots		000000000
H		
¢		
$\check{\sim}$		
心		へのハへのへへへへ
¢		anconnumman
\vdash		NOOMNONNHO
		000000000
		．．．．．．
	\checkmark	－000000000
	\sim	ことソ，
	\mapsto	NmNNNNMOcon
	0	NoOmNONーHO
		0000000000
		．．．．．．．．
		0000000000

WINDOW
 ©OOODOOOOO
 かの6mのNGいNo 0000000000

 000－100000
 －000000000

 जnのnonvino
$\stackrel{\star}{E}$ Numinivino
NTERVAL
OWER
$1(0.12)$
TASK RISK

 HMonnonnooo

Figures not in parentheses are estimates when no imputation is carried
out for cases with missing values－methods described in the Appendices are employed；figures in parentheses are the corresponding estimates
when values are amputed for missing cases．

MODEL： $\log N$

β
 $0.17(0.17)$

$$
\begin{array}{cc}
90 \% \text { CONFIDENCE INTERVAL } \\
\text { UPPER } & \text { LOWER } \\
0.27(0.28) & 0.11(0.12)
\end{array}
$$

 Nininivinumio o

0000000000

β	STD．ER．	90% CONFIDENCE INTERVAL
$0.24(0.22)$	$0.06(0.06)$	$0.33(0.37)$

以o
かのにつへへへへべ
-000000000
$\stackrel{\dot{1}}{\square}$
is
-000000000

0000000000
NMM onvomoint
जMNTMNLOUN
0000000000

0000000000
 －000000000

 Nininionvio o
TASK

90%	CONFIDENCE
INTERVAL	
UPPER	LOWER
$0.123(0.094)$	$0.000(0.000)$
$0.320(0.356)$	$0.012(0.027)$
$0.073(0.115)$	$0.000(0.001)$
$0.199(0.086)$	$0.000(0.000)$
$0.153(0.190)$	$0.002(0.008)$
$0.020(0.081)$	$0.000(0.000)$
$0.187(0.185)$	$0.002(0.002)$
$0.035(0.002)$	$0.000(0.000)$
$0.117(0.074)$	$0.000(0.000)$
$0.143(0.122)$	$0.003(0.002)$

Figures not in parentheses are estimates when no imputation is carried out for cases with missing values－methods described in the Appendices
are employed；figures in parentheses are the corresponding estimates are employed；figures in parentheses are the corresponding estimates
when values are imputed for missing cases．
σ_{ω}

STD．ER

\author{

$0.08(0.13)$

}
$0.08(0.06)$

$0.03(0.06) \quad 0.18(0.24) \quad 0.01(0.05)$
$x_{1}+\pi$

TASK EFFECTS

$E R$
STD

óoóooooo
 óó000000
 OOOOOOOOOO
NGNONMGNG
NONONNGHM 0000000000

		antombunom
		N－NNTNunv
		－OOHNOHO
	\propto	．
	山	000000000
	3	いいいひールール
$山$	\bigcirc	
\bigcirc	\cdots	N－NmNNNNN
za		－000न000न
ய4		－．．．．．
$\square>$		00000000
－¢		
いш		
マト		
－2		
Un		への
		NMO－mmatun
\cdots		NNJmoanon
0		NOWNいOVHM
a	α	－．．．
	\cdots	－00000000
	0	い－，－
	a	
	7	mincmmnvon
		TOOHNOHON
		00000000

士NMNON以NN

OOOOOOOOO unouvumay MNOMजUMOG
－00000000

$\underset{山}{\alpha}$

山
$\stackrel{Q}{6}$
000000000

000000000

 $\therefore 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ}$

のヘへのへこのスの
－

べへへへへへべが
 $0000-10000$ ơe is áooninova 00000000́

∞ UनCo oounoo －OMNGOMON 000000000 ∞ にNMनいN －OTNMONON －000cコロ00

$\underset{\sim}{\alpha}$
$\stackrel{\square}{5}$
ソV～
．00000000
$\frac{\square}{0}$
 いがいがmincut
 00 num
0000000

S $\supseteq \exists \downarrow \sqsupset \exists$ XSV1

ER

$0.35(0.36)$

Figures not in parentheses are estimates when no imputation is carried out for cases with missing values－methods described in the Appendices

Model: Log N $\begin{array}{cc}90 \% \text { CONFI DENCE INTERVAL } \\ \text { UPPER } & \text { LOHER } \\ 0.44(0.38) & 0.22(0.19)\end{array}$

$$
\begin{array}{cc}
90 \% \text { CONFIDENCE INTERVAL } \\
\text { UPPER } & \text { LONER } \\
0.65(0.36) & 0.03(0.18)
\end{array}
$$

 ○ODODODO

- ${ }^{\circ}$				
orogoogog				
marunvかかm				

STD. ER.

$$
0.31(0.06)
$$

TASK "STD. DEVS." ion OMMNNG?

Figures not in parentheses are estimates when no imputation is carried
out for cases with missing values - methods described in the Appendices aut for cases with missing values - methods described in the Appendices
are employed; figures in parentheses are the corresponding estimates
when values are imputed for missing cases.

Figure 1. Uniform Residuals
System L, Model: Log N. no imputation

Figure 3. Uniform Residuals
System L, Model: Log EV, no imputation
(

Figure 5. Uniform Residuals
System D. Model: Log N, no imputation

 (-01

SAMPLE SILE - 100

Figure 7. Uniform Residuals
System D. Model: Log EV, no imputation

$\stackrel{-}{\square}$

INITIAL DISTRIBUTION LIST

1. Library (Code 0142) 2
Naval Postgraduate School
Monterey, CA 93943-5000
2. Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22314
3. Office of Research Administration (Code 012) 1
Naval Postgraduate School
Monterey, CA 93943-5000
4. Prof. Peter Purdue 1
Code OR-Pd
Naval Postgraduate School
Monterey, CA 93943-5000
5. Department of Operations Research (Code 55) 1
Naval Postgraduate School
Monterey, CA 93943-5000
6. Prof. Donald Gaver, Code OR-Gv. 15
Naval Postgraduate School
Monterey, CA 93943-5000
7. Prof. Patricia Jacobs 1
Code OR/Jc
Naval Postgraduate School
Monterey, CA 93943-5000
8. Center for Naval Analyses 1
4401 Ford Avenue
Alexandria, VA 22302-0268
9. Dr. David Brillinger. 1
Statistics Department
University of California
Berkeley, CA 94720

INITIAL DISTRIBUTION LIST

1. Library (Code 0142) 2
Naval Postgraduate School
Monterey, CA 93943-5000
2. Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22314
3. Office of Research Administration (Code 012) 1
Naval Postgraduate School
Monterey, CA 93943-5000
4. Prof. Peter Purdue 1
Code OR-Pd
Naval Postgraduate School
Monterey, CA 93943-5000
5. Department of Operations Research (Code 55). 1
Naval Postgraduate School
Monterey, CA 93943-5000
6. Prof. Donald Gaver, Code OR-Gv 15
Naval Postgraduate School
Monterey, CA 93943-5000
7. Prof. Patricia Jacobs 1
Code OR/Jc
Naval Postgraduate School
Monterey, CA 93943-5000
8. Center for Naval Analyses 1
4401 Ford Avenue
Alexandria, VA 22302-0268
9. Dr. David Brillinger 1
Statistics Department
University of California
Berkeley, CA 94720
10. Dr. R. Gnanadesikan 1
Bellcore
435 South Street
Morris Township NJ 07960
11. Prof. Bernard Harris 1
Dept. of Statistics
University of Wisconsin
610 Walnut Street
Madison, WI 53706
12. Prof. W. M. Hinich 1
University of Texas
Austin, TX 78712
13. Prof. I. R. Savage 1
Dept. of Statistics
Yale University
New Haven, CT 06520
14. Prof. W. R. Schucany 1
Dept. of Statistics
Southern Methodist University
Dallas, TX 75222
15. Prof. D. C. Siegmund 1
Dept. of Statistics
Sequoia Hall
Stanford University
Stanford, CA 94305
16. Prof. H. Solomon 1
Department of Statistics
Sequoia Hall
Stanford University
Stanford, CA 94305
17. Dr. Ed Wegman 1
George Mason University
Fairfax, VA 22030
18. Dr. P. Welch 1
IBM Research Laboratory
Yorktown Heights, NY 10598
19. Dr. Neil Gerr 1
Office of Naval Research
Arlington, VA 22217
20. Prof. Roy Welsch 1
Sloan School
M.I.T.
Cambridge, MA 02139
21. Dr. J. Abrahams 1
Code 1111, Room 607
Mathematical Sciences Division
Office of Naval Research
800 North Quincy Street
Arlington, VA 22217-5000
22. Prof. J. R. Thompson 1
Dept. of Mathematical Science
Rice University
Houston, TX 77001
23. Dr. P. Heidelberger 1
IBM Research Laboratory
Yorktown Heights
New York, NY 10598
24. Prof. M. Leadbetter 1
Department of Statistics
University of North Carolina
Chapel Hill, NC 27514
25. Prof. D. L. Iglehart 1
Dept. of Operations Research
Stanford University
Stanford, CA 94350
26. Prof. J. B. Kadane 1
Dept. of Statistics
Carnegie-Mellon University Pittsburgh, PA 15213
27. Prof. J. Lehoczky 1
Department of Statistics
Pittsburgh, PA 15213
28. Dr. J. Maar (R513) 1
National Security Agency
Fort Meade, MD 20755-6000
29. Prof. M. Mazumdar 1
Dept. of Industrial Engineering
University of Pittsburgh
Pittsburgh, PA 15235
30. Prof. M. Rosenblatt 1
Department of Mathematics
University of California, San Diego
La Jolla, CA 92093
31. Prof. H. Chernoff 1
Department of Statistics
Harvard University
1 Oxford Street
Cambridge, MA 02138
32. Dr. T. J. Ott 1
Bellcore
435 South Street
Morris Township, NJ 07960
33. Dr. Alan Weiss 1
AT\&T Bell Laboratories
Mountain Avenue
Murray Hill, NJ 07974
34. Prof. Joseph R. Gani. 1
Mathematics Department
University of California
Santa Barbara, CA 93106
35. Prof. Frank Samaniego 1
Statistics Department
University of California
Davis, CA 95616
36. Dr. James McKenna 1
AT\&T Bell Laboratories
Mountain Avenue Murray Hill, NJ 07974
37. Commander 1
Attn: G. F. Kramer
Naval Ocean Systems Center
Code 421
San Diego, CA 92152-5000
38. Prof. Tom A. Louis 1
School of Public Health
University of Minnesota
Mayo Bldg. A460
Minneapolis, MN 55455
39. Dr. Nan Laird 1
Biostatistics Dept.
Harvard School of Public Health
677 Huntington Ave.
Boston, MA 02115
40. Dr. Marvin Zelen 1
Biostatistics Department
Harvard School of Public Health
677 Huntington Ave.
Boston, MA 02115
41. Dr. John Orav 1
Biostatistics Department
Harvard School of Public Health
677 Huntington Ave.
Boston, MA 02115
42. Prof. R. Douglas Martin 1
Department of Statistics, GN-22
University of Washington
Seattle, WA 98195
43. Prof. W. Stuetzle 1
Department of Statistics
University of Washington
Seattle, WA 98195
44. Prof. F. W. Mosteller 1
Department of Statistics
Harvard University 1 Oxford St.
Cambridge, MA 02138
45. Dr. D. C. Hoaglin 1
Department of Statistics
Hardvard University
1 Oxford Street
Cambridge, MA 02138
46. Prof. N. D. Singpurwalla 1
George Washington University Washington, DC 20052
47. Center for Naval Analysis 1
2000 Beauregard Street
Alexandria, VA 22311
48. Prof. George S. Fishman 1
Curr. in OR \& Systems Analysis
University of North Carolina
Chapel Hill, NC 20742
49. Dr. Alan F. Petty 1
Code 7930
Naval Research Laboratory Washington, DC 20375
50. Prof. Bradley Efron 1
Statistics Dept.
Sequoia Hall
Stanford University
Stanford, CA 94305
51. Prof. Carl N. Morris 1
Statistics Department
Harvard University
1 Oxford St.
Cambridge, MA 02138
52. Dr. John E. Rolph 1
RAND Corporation
1700 Main St.
Santa Monica, CA 90406
53. Prof. Linda V. Green 1
Graduate School of Business
Columbia University
New York, NY 10027
54. Dr. David Burman 1
AT\&T Beli Telephone Laboratories
Mountain Avenue
Murray Hill, NJ 07974
55. Dr. Ed Coffman 1
AT\&T Bell Telephone Laboratories
Mountain Avenue Murray Hill, NJ 07974
56. Prof. William Jewell 1
Operations Research Department
University of California, Berkeley
Berkeley, CA 94720
57. Prof. D. C. Siegmund 1
Dept. of Statistics
Sequoia Hall
Stanford University
Stanford, CA 94305
58. Operations Research Center, Rm E40-164 1
Massachusetts Institute of Technology
Attn: R. C. Larson and J. F. Shapiro Cambridge, MA 02139
59. Arthur P. Hurter, Jr. 1
Professor and Chairman
Dept. of Industrial Engineering and Management Sciences Northwestern University
Evanston, IL 60201-9990
60. Institute for Defense Analysis 1
1800 North Beauregard
Alexandria, VA 22311
61. Prof. J. W. Tukey 1
Statistics Dept., Fine Hall
Princeton University
Princeton, NJ 08540
62. Dr. Daniel H. Wagner 1
Station Square One
Paoli, PA 19301
63. Dr. Colin Mallows 1
AT\&T Bell Telephone Laboratories
Mountain Avenue
Murray Hill, NJ 07974
64. Dr. D. Pregibon 1
AT\&T Bell Telephone Laboratories
Mountain Avenue
Murray Hill, NJ 07974
65. Dr. Jon Kettenring 1
Bellcore
435 South Street
Morris Township, NJ 07960
66. Prof. David L. Wallace 1
Statistics Dept.
University of Chicago
5734 S. University Ave.
Chicago, IL 60637
67. Dr. S. R. Dalal 1
AT\&T Bell Telephone Laboratories
Mountain Avenue
Murray Hill, NJ 07974
68. Dr. M. J. Fischer 1
Defense Communications Agency
1860 Wiehle Avenue
Reston, VA 22070
69. Dr. Prabha Kumar
Defense Communications Agency 1
1860 Wiehle Avenue
Reston, VA 22070
70. Dr. B. Doshi 1
AT\&T Bell Laboratories
HO 3M-335
Holmdel, NJ 07733
71. Dr. D. M. Lucantoni 1
AT\&T Bell Laboratories
Hoidmel, NJ 07733
72. Dr. V. Ramaswami 1
MRE 2Q-358
Bell Communications Research, Inc.
435 South Street
Morristown, NJ 07960
73. Prof. G. Shantikumar. 1
The Management Science GroupSchool of Business AdministrationUniversity of California
Berkeley, CA 94720
74. Dr. D. F. Daley 1
Statistic Dept. (I.A.S.)
Australian National University
Canberra, A.C.T. 2606
AUSTRALIA
75. Dr. Guy Fayolle 1I.N.R.I.A.Dom de Voluceau-Rocquencourt
78150 Le Chesnay Cedex
FRANCE
76. Professor H. G. Daellenbach 1
Department of Operations Research University of Canterbury
Christchurch, NEW ZEALAND
77. Koh Peng Kong 1
OA Branch, DSO
Ministry of Defense
Blk 29 Middlesex Road
SINGAPORE 1024
78. Professor Sir David Cox 1
Nuffield College
Oxford, OXI INF
ENGLAND
79. Dr. A. J. Lawrence 1
Department of Mathematical Statistics
University of Birmingham
P. O. Box 363
Birmingham B15. 2TT
ENGLAND
80. Dr. F. P. Kelly 1
Statistics Laboratory
16 Mill Lane
Cambridge
ENGLAND
81. Dr. R. J. Gibbens 1
Statistics Laboratory
16 Mill Lane
Cambridge
ENGLAND
82. Dr. John Copas 1
Dept. of Mathematical Statistics
University of Birmingham
P. O. Box 363
Birmingham B15 2TT
ENGLAND
83. Dr. D. Vere-Jones 1Dept. of MathematicsVictoria University of WellingtonP. O. Box 196
Wellington
NEW ZEALAND
84. Prof. Guy Latouche 1
University Libre Bruxelles
C. P. 212
Blvd. De Triomphe
B-1050 Bruxelles
BELGIUM

[^0]: Altemative strategies
 § Missing data (e.g., simulator error)

